
 

      
Abstract – The Level 1 Muon Trigger subsystem for BTeV will 

be implemented using the same architectural building blocks as 
the BTeV Level 1 Pixel Trigger: pipelined field programmable 
gate arrays feeding a farm of dedicated processing elements. The 
muon trigger algorithm identifies candidate tracks, and is 
sensitive to the muon charge (sign); candidate dimuon events are 
identified by complementary charge track-pairs. To insure that 
the trigger is operating effectively, the trigger development team 
is actively collaborating in an independent multi-university 
research program for reliable, self-aware, fault adaptive behavior 
in real-time embedded systems (RTES). Key elements of the 
architecture, algorithm, performance, and engineered reliability 
are presented.  

I. INTRODUCTION 

HE proposed BTeV [1] Level 1 Trigger consists of 
similar yet independent Pixel and Muon Triggers, 

which use pipelined programmable logic and embedded 
processors to arrive at trigger opinions for each 132 ns beam 
crossing. These opinions are weighed by the Global Level 1 
Trigger to produce a Level 1 trigger decision at the beam-
crossing rate, with a resource-bounded latency of a few 
milliseconds.  

 The complexity of the system, in both hardware and 
software, raise serious concerns with respect to reliability. 
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With thousands of embedded processors operating 
concurrently, undetected faults can corrupt the trigger results 
in a manner that can be extremely difficult to diagnose after 
the fact. And a local fault can have a global impact if not 
addressed. An aggressive approach to detection and fault 
adaptation is required. 

The architecture and algorithm of the Level 1 Muon Trigger 
is presented, followed by a discussion of the tools that are 
being developed to address these reliability concerns. 

II. BTEV LEVEL 1 MUON TRIGGER 
The Level 1 Muon Trigger processes wire-chamber hit data 

from 3 stations of 4 layers each. The stations (groups of layers) 
are separated by iron toroids. The layers consist of octants of 
common-oriented tubes. All tubes are transverse to the beam 
line. The R layers (views) have tubes perpendicular to the 
radial centerline of the octant; the stereo layers (U, V) have 
tubes oriented at +/- 22.5 degrees with respect to the R layer. 
The fourth layer in each station (denoted “S”) is a duplicate R 
layer. There are approximately 36*103 wire chambers in the 
detector.  

Hit data is provided per tube, per 132 ns crossing, over 96 
fiber optic cables. The Preprocessors of the Muon Trigger 
performs adjacent-tube hit compression and radial sorting. The 
radial sorting (from outer-most to inner-most) is an important 
performance aspect. Subsequent processing is performed on a 
time/space-available basis. Processing from the outer-most to 
the inner-most preferentially biases the result in favor of 
detecting high(er) PT tracks, and ignoring the “ring of fire” hits 
in the tubes closest to the beam line. The Preprocessors will be 
implemented with field programmable gate arrays (FPGAs); 
48 Preprocessor boards are required. 

The compressed/sorted data are provided to a farm of 
embedded processors for analysis. Work is assigned to 
processor-groups (farmlets) on a round-robin basis; work is 
assigned to individual processors on a next-available basis. 
The specific processor architecture is unimportant to the Muon 
Trigger algorithm. For the sake of expediency, current 
development work employs a Texas Instruments DSP (TMS 
320C6x family). The actual processor used will be selected at 
time of construction in FY2005. However, the number of 
processors per farmlet does have a significant influence on the 
buffer memory requirements of the farmlet to support round-
robin assignment without backpressure or overflow. Queuing 
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studies indicate that 6 processors per farmlet will require 
buffer capacity for 20 events. At 2 Kbytes/event, this is at most 
a modest resource requirement. 

Each octant is processed independently. Further, each view 
(i.e. a set of three layers, one from each station, with the same 
orientation) is processed separately.  Consider as an example 
the R view (layers) from stations 1, 2, and 3, denoted as R1, R2, 
and R3 respectively. A hit-tuple (r1, r2, r3) is declared to be a 
muon track if the χ2 fit of the track points back to the 
interaction point. Fortunately, it is not necessary to implement 
this expensive computation for every hit-tuple. By examining 
Monte Carlo generated collections of tube hits (and noise), it 
has been determined that a viable alternative is to perform a 
coordinate rotation and measure the distance of (r1’, r2’, r3’) 
from the plane of tracks (R3 = 27.69 - 1.26*R1 + 2.20*R2) 
which originate from the interaction point. Further, the sign of 
the distance (above or below the plane) is an indication of the 
track curvature, and hence of the muon charge (+/-).  

The implementation of this algorithm operates from the list 
of hits from R2. For each r2, a directed search is made for 
candidate R3 hits. It is not necessary to search the entire R3 
layer, since hits outside of a bounded region (determined by 
the value of r2) will exceed the limits for an adequate fit. For 
each (r2, r3), a directed search of R1 then provides the tuple (r1, 
r2, r3). This process is repeated for each view (the second R 
view (S), and both stereo views (U, V)), and for each octant. 
Since the track finding process also estimates charge (sign) 
from track curvature, dimuon events are detected by finding a 
pair of tracks with complementary charge (curvature).  

Using a 150 MHz DSP, the above processing can be 
performed in 33 µs (mean execution time), which at 132 ns 
beam-crossing time, requires 227 processors. 250 are specified 
in the design, with farmlet buffering to accommodate the 
fluctuations in processing time. 

It is no coincidence that the Muon Trigger is strikingly 
similar to Pixel Trigger [2]. Both employ an FPGA-rich 
preprocessing component, followed by an embedded processor 
farm for subsequent analysis. The primary differences between 
the triggers are that the Pixel Trigger has two FPGA layers 
(Preprocessor, and Segment Tracker) compared to the Muon 
Trigger’s one, and the overall scale of the triggers. The Pixel 
Trigger is essentially 10 times larger than the Muon Trigger in 
board count, due to the increased computational demands of 
the Pixel Trigger. However, as a purposeful cost-savings plan, 
the Muon Trigger is being developed to utilize, wherever 
possible, the same hardware elements as the Pixel Trigger. 
Hence the Muon Trigger embedded processor farm and 
interconnection switch will be identical to the Pixel Trigger, 
except for a smaller size and different executable code.   

III. REAL TIME EMBEDDED SYSTEM SUPPORT 
To address concerns about the hardware and software 

complexity of the BTeV Trigger, an independent research 
initiative to study Real-Time Embedded Systems (RTES) was 

undertaken. The RTES Collaboration is funded by the National 
Science Foundation Information Technology Research 
Program, and is a multi-university group of computer 
scientists, electrical engineers, and physicists [3].  

The mission of RTES (taken from the introduction to the 
NSF proposal), is “to develop methodologies and tools for 
designing and implementing very large-scale real-time 
embedded computer systems that: 
1. achieve ultra high computational performance through use 

of parallel hardware architectures 
2. achieve and maintain functional integrity via distributed, 

hierarchical monitoring and control 
3. are required to be highly available 
4. are dynamically reconfigurable, maintainable, and 

evolvable.” 
The RTES project consists of 3 primary software 

development branches (and an educational outreach element 
which will not be discussed here): a means for modeling and 
developing code for a large system of embedded processors, a 
strong self-protection mechanism to insure that code is 
executing, and a small-footprint solution for instrumenting and 
controlling execution throughout the system. These are each 
discussed in the following sections. 

A. Model Integrated Computing (MIC) 
Developing code for a large, complex system of FPGAs and 

embedded processors is a difficult task by itself. Incorporating 
a diversity of fault detection and mitigation strategies, 
coordinating the code generation for the processors, and 
modeling the system both prior to deployment as well as in 
operation is a daunting task. 

To address this, Model Integrated Computing [4, 5] has been 
adopted. This approach utilizes a graphical representation the 
physical architecture, logical architecture, and the behavior of 
the system. Distinct (but integrated) drawings define the 
connectivity between hardware, as well as the computational 
tasks to be performed; the assignment of process to processor 
is thus orthogonalized from the hardware and software 
specification. Further, finite-state machine drawings can be 
used to simplify the specification of behavior, above and 
beyond the development of point-code to implement tasks. 

Modeling is also provided. The described system can be 
well studied prior to operation. And with the incorporation of 
messaging from the embedded processors, the operating 
behavior of the run-time system can be displayed on the same 
set of drawings used to represent the system. 

This approach is well suited to the operational choice of the 
C6x DSP, as a detailed hardware/software/kernel solution for 
this processor has already been developed. 

B. Adaptive Reconfigurable Mobile Objects for Reliability 
(ARMORs) 
ARMORs provide a strong solution-in-depth for reliable 

execution on full-rank computational elements [6, 7]. It is well 
suited to Linux operation (for which it was developed), but has 
been ported to Windows as well. 



 

ARMORs fall into 3 primary types. The execution ARMOR 
is the most common. It provides direct monitoring and support 
of a “protected” application, including checkpointing for the 
application, and self-checking for the ARMOR itself. If the 
application hangs or crashes, the ARMOR detects this failure, 
and resets or restarts the application as appropriate. 

To insure that the execution ARMOR does not fail, a 
supervisory Fault Tolerant Manager (FTM) ARMOR monitors 
subordinate ARMORs, resetting or restarting them as 
necessary. 

And to insure that the FTM ARMOR does not fail, a 
“heartbeat” ARMOR monitors the FTM ARMOR, resetting or 
restarting it as necessary. 

ARMORs are hierarchical and communicate via sockets. As 
such they can exist on any number of networked processors. 
Hardware failures can be handled by the FTM ARMOR by 
restarting the relevant execution ARMOR(s) and protected 
application(s) on any functioning processor with the resources 
needed by the application. ARMORs are also modular and 
highly configurable. A micro-kernel provides the basic 
operational behavior; user-written “elements” can be added to 
implement specific detection and recovery mechanisms. 

In the context of BTeV, the ARMORs will see primary use 
in the Supervisory and Monitor subsystems, the various high 
level Control subsystems, as well as in the Level 2/3 Linux 
farm. Each of the Muon Trigger, Pixel Trigger, and Global 
Level 1 Trigger have their own Supervisor and Monitor 
subsystem (PTSM, MTSM, GL1SM) which is responsible for 
configuring FPGAs, loading code into embedded processors, 
monitoring operation, and detecting failures. Each of these 
“xxSM” subsystems will be a hierarchical network of a top-
level host, intermediate-level regional managers, and low-level 
local managers to provide control and monitoring. Each of 
these will have ARMORs to perform or protect the control and 
monitoring function.  

At the highest control level of BTeV, Slow Control and Run 
Control will utilize ARMORs to insure that the control 
applications and displays are executing. This capability has 
already been demonstrated [8]. 

And while not the topic of this paper, the Level 2/3 trigger 
farm which will use 2000+ Linux computers is a perfect 
candidate for ARMORs, providing direct protection of the 
L2/3 trigger application. The homogeneity of the farm and the 
ability of the FTM ARMOR to restart applications on remote 
processors immediately translates hardware failure into little 
more than a graceful loss of capacity. 

C. Very Light-weight Agents (VLAs) 
Complementary to the strength and resource-needs of 

ARMORs, VLAs provide a universal, minimal footprint 
solution for monitoring and control support [9]. These are 
small, fast, low-impact building blocks that can be 
incorporated in the embedded processors themselves, as well 
as at each level throughout the xxSM control system, and in 
the L2/3 Linux farm. VLAs handle communications to and 

from higher-level entities, and well as monitor and control 
lower-level entities. Common messaging and API presentation 
make these software elements available at every level of the 
system.  

Because of their size and speed, VLAs are crucial to 
detection and mitigation in the embedded processor farm. 
VLAs have passive and active components. The passive 
components handle communications traffic from the trigger 
application in the embedded processor to the higher-level 
control processes, as well as control traffic from the xxSM host 
down to the embedded processors. The passive components 
also collect statistics and provide summary information to the 
higher levels. 

The active VLA components are scheduled during processor 
idle time, and search for potential faults by direct testing 
(memory tests, checksums, etc.). 

Like the ARMORs, the VLAs are a balance of basis code 
that provides the primary communications and control 
infrastructure, complemented by user-written modules for 
trigger-specific detection and mitigation. 

Upon detection of a fault, the VLA can variously mitigate 
the problem locally (e.g. by reloading and restarting the trigger 
application to handle a hung application), and/or report the 
fault up the control chain for a higher-level decision to be 
made. A key feature throughout the system is the separation of 
capability from policy. The VLAs have sweeping powers to 
reset, restart, reload, and redirect, but whether and which of 
these powers is invoked is entirely controlled by a system-wide 
“authority vector” which defines the scope of who can decide 
what. At the most primitive setting, all faults are reported to 
the (human) operator, and all mitigation is directed from the 
operator’s console. At the most sophisticated setting, each 
VLA and ARMOR acts autonomously, applying its best-guess 
at a fault mitigation solution, while reporting the fault, and the 
solution, to a higher level. It can be expected that different 
VLAs and ARMORs may interfere with each other by 
applying contradictory mitigation strategies. Effective system 
operation will require a balance between these extremes in 
policy, which will be implemented as differing values of the 
authority vector. 

IV. SUMMARY 

The Level 1 Muon Trigger will require a large number of 
programmable logic devices and embedded processors, which 
must function reliably or fail gracefully in order to deliver 
physics results. To insure this, an aggressive fault detection 
and mitigation research project (RTES) is developing 
modeling and development tools, protection modules, and 
instrumentation and control features, which in principle could 
be applied to any large-scale, embedded system. 

A prototype of the RTES solution is in development with 
planned presentation at the SuperComputing 2003 [10]. 
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